A research roadmap for optimising the use of antibiotics in humans

<table>
<thead>
<tr>
<th>Two Years</th>
<th>Five Years</th>
<th>Ten Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy and strategic planning</td>
<td>Medicines management and prescribing systems</td>
<td>Enhance methods to increase population health literacy</td>
</tr>
</tbody>
</table>

Identify contextually and culturally sensitive and responsive interventions that account for inequalities to effectively optimise health-seeking and health-provision behaviours

Apply pathway approach to research to promote better understanding of individual, teams, organisational, national and global IPC and antibiotic prescribing challenges and potential solutions

Create structural change in the framework of global health organisations to ensure agency and representation for populations vulnerable to being excluded

Assess the mechanisms for scale-up through analysis of strategic and cultural contexts, improvements in the health and welfare of people in HICs and LMICs

Take affirmative action in including individuals from minority groups in decision and policy making, as well as disaggregation of key health indicator data by ethnicity

Investigate effective combinations of approaches to balance timely access with reducing inappropriate antimicrobial use

Understand effects of acute limited/reduced healthcare access on antimicrobial use and potential knock-on effects on patient safety

Engage patients, public and citizens in AMR research

Investigate impact of pandemic on antimicrobial use and AMS

Investigate effects of deprioritising non-pandemic research on infection-related medication safety and wider medicines optimisation

Identify what patient populations would benefit most from technology supporting antimicrobial optimisation

Build upon the momentum of mHealth and other electronic technologies being readily adopted in LMICs for the purpose of supporting antimicrobial optimisation in parallel to the wider adoption of technology in these settings

Define appropriate and standardised outcome measures for the assessment of success of technological interventions

Investigate how new technologies for targeted and optimised antibiotic use can be implemented with least disruption to existing patient pathways

Identify mechanisms for the linkage of technology with non-communicable healthcare problems and chronic infections (such as TB and HIV) that can complicate acute infection management

Investigate the scaleup and adoption of technology across HIC-LMIC

Develop and repurpose contextually appropriate, economical innovation and technology to optimise disease management

Identify mechanisms to manage demand generation

Address public misconceptions and realign public health campaign messages with up-to-date evidence

Incorporate social science to develop effective communication strategies

Investigate the role of ‘nudges’ e.g. on drug package redesign, and prescribing architecture to change behaviour

Understand unintended consequences of reduced travel and socialisation (from external shocks such as a pandemic) on antimicrobial demand and supply

Accelerate safe and appropriate access of important new antimicrobials in high burden LMICs

Identify contextually and culturally sensitive and responsive interventions that account for inequalities to effectively optimise health-seeking and health-provision behaviours

Apply pathway approach to research to promote better understanding of individual, teams, organisational, national and global IPC and antibiotic prescribing challenges and potential solutions

Create structural change in the framework of global health organisations to ensure agency and representation for populations vulnerable to being excluded

Understand and account for variation in health seeking and health providing behaviours to guide community, public, patient and citizen engagement in AMR

Evaluate NAPs (through independent inquiry) and accelerate the learning

Enhance methods to increase population health literacy

Establish economic evaluation of interventions

Develop & enhance antimicrobial usage data capture, linkage and analysis for monitoring AMS

Develop & enhance systematic drug monitoring across primary, secondary and social care sectors (e.g. therapeutic drug monitoring, efficacy and adverse drug events)

Address the data gaps in Watch and Reserve category antimicrobials which impede therapeutic optimisation

Identify the role of stakeholders, including patients/public/citizens in strategy and policy

Coordinate across NAPs targeting public health

Investigate effective combinations of approaches to balance timely access with reducing inappropriate antimicrobial use

Understand effects of acute limited/reduced healthcare access on antimicrobial use and potential knock-on effects on patient safety

Engage patients, public and citizens in AMR research

Investigate impact of pandemic on antimicrobial use and AMS

Investigate effects of deprioritising non-pandemic research on infection-related medication safety and wider medicines optimisation

Identify what patient populations would benefit most from technology supporting antimicrobial optimisation

Build upon the momentum of mHealth and other electronic technologies being readily adopted in LMICs for the purpose of supporting antimicrobial optimisation in parallel to the wider adoption of technology in these settings

Define appropriate and standardised outcome measures for the assessment of success of technological interventions

Investigate how new technologies for targeted and optimised antibiotic use can be implemented with least disruption to existing patient pathways

Identify mechanisms for the linkage of technology with non-communicable healthcare problems and chronic infections (such as TB and HIV) that can complicate acute infection management

Investigate the scaleup and adoption of technology across HIC-LMIC

Develop and repurpose contextually appropriate, economical innovation and technology to optimise disease management

Identify contextually and culturally sensitive and responsive interventions that account for inequalities to effectively optimise health-seeking and health-provision behaviours

Apply pathway approach to research to promote better understanding of individual, teams, organisational, national and global IPC and antibiotic prescribing challenges and potential solutions

Create structural change in the framework of global health organisations to ensure agency and representation for populations vulnerable to being excluded

Understand and account for variation in health seeking and health providing behaviours to guide community, public, patient and citizen engagement in AMR

Evaluate NAPs (through independent inquiry) and accelerate the learning

Enhance methods to increase population health literacy

Establish economic evaluation of interventions

Develop & enhance antimicrobial usage data capture, linkage and analysis for monitoring AMS

Develop & enhance systematic drug monitoring across primary, secondary and social care sectors (e.g. therapeutic drug monitoring, efficacy and adverse drug events)

Address the data gaps in Watch and Reserve category antimicrobials which impede therapeutic optimisation

Identify the role of stakeholders, including patients/public/citizens in strategy and policy

Coordinate across NAPs targeting public health